cc.factorie.app.classify.backend

LinearMulticlassTrainer

class LinearMulticlassTrainer extends MulticlassClassifierTrainer[LinearMulticlassClassifier] with OptimizingBaseLinearTrainer[la.Tensor1, la.Tensor1, Int, LinearMulticlassClassifier]

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LinearMulticlassTrainer
  2. OptimizingBaseLinearTrainer
  3. MulticlassClassifierTrainer
  4. BaseLinearTrainer
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearMulticlassTrainer(optimizer: GradientOptimizer, useParallelTrainer: Boolean, useOnlineTrainer: Boolean, objective: Multiclass, maxIterations: Int, miniBatch: Int, nThreads: Int)(implicit random: Random)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. final def baseTrain(classifier: LinearMulticlassClassifier, labels: Seq[Int], features: Seq[la.Tensor1], weights: Seq[Double], evaluate: (LinearMulticlassClassifier) ⇒ Unit): Unit

    Estimate the parameters of a classifier that has already been created.

    Estimate the parameters of a classifier that has already been created.

    Definition Classes
    OptimizingBaseLinearTrainerBaseLinearTrainer
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. val maxIterations: Int

  16. val miniBatch: Int

  17. val nThreads: Int

  18. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. def newModel(featureSize: Int, labelSize: Int): LinearMulticlassClassifier

  20. final def notify(): Unit

    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  22. val objective: Multiclass

  23. val optimizer: GradientOptimizer

  24. implicit val random: Random

  25. final def simpleTrain(labelSize: Int, featureSize: Int, labels: Seq[Int], features: Seq[la.Tensor1], weights: Seq[Double], evaluate: (LinearMulticlassClassifier) ⇒ Unit): LinearMulticlassClassifier

    Create a Classifier and estimate its parameters.

    Create a Classifier and estimate its parameters.

    Definition Classes
    BaseLinearTrainer
  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. def train[Label <: LabeledDiscreteVar](classifier: LinearMulticlassClassifier, labels: Seq[Label], l2f: (Label) ⇒ VectorVar, l2w: (Label) ⇒ Double): Unit

    Definition Classes
    MulticlassClassifierTrainer
  29. def train[Label <: LabeledDiscreteVar](classifier: LinearMulticlassClassifier, labels: Seq[Label], l2f: (Label) ⇒ VectorVar, testLabels: Seq[Label], l2w: (Label) ⇒ Double = (l: Label) => 1.0): Unit

    Definition Classes
    MulticlassClassifierTrainer
  30. def train(classifier: LinearMulticlassClassifier, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], evaluate: (LinearMulticlassClassifier) ⇒ Unit): Unit

    Definition Classes
    MulticlassClassifierTrainer
  31. def train(classifier: LinearMulticlassClassifier, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], evaluate: (LinearMulticlassClassifier) ⇒ Unit): Unit

    Definition Classes
    MulticlassClassifierTrainer
  32. def train(classifier: LinearMulticlassClassifier, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar]): Unit

    Definition Classes
    MulticlassClassifierTrainer
  33. def train(classifier: LinearMulticlassClassifier, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double]): Unit

    Definition Classes
    MulticlassClassifierTrainer
  34. def train(classifier: LinearMulticlassClassifier, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): Unit

    Definition Classes
    MulticlassClassifierTrainer
  35. def train(classifier: LinearMulticlassClassifier, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): Unit

    Definition Classes
    MulticlassClassifierTrainer
  36. def train[Label <: LabeledDiscreteVar](labels: Seq[Label], l2f: (Label) ⇒ VectorVar, l2w: (Label) ⇒ Double): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  37. def train[Label <: LabeledDiscreteVar](labels: Seq[Label], l2f: (Label) ⇒ VectorVar, testLabels: Seq[Label], l2w: (Label) ⇒ Double = (l: Label) => 1.0): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  38. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], evaluate: (LinearMulticlassClassifier) ⇒ Unit): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  39. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], evaluate: (LinearMulticlassClassifier) ⇒ Unit): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  40. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar]): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  41. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double]): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  42. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  43. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): LinearMulticlassClassifier

    Definition Classes
    MulticlassClassifierTrainer
  44. val useOnlineTrainer: Boolean

  45. val useParallelTrainer: Boolean

  46. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped