cc.factorie.app.classify.backend

MulticlassClassifierTrainer

trait MulticlassClassifierTrainer[C <: MulticlassClassifier[la.Tensor1]] extends BaseLinearTrainer[la.Tensor1, la.Tensor1, Int, C]

Base trait for training multi-class classifiers, but it requires the input to be a Tensor1 feature vector.

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MulticlassClassifierTrainer
  2. BaseLinearTrainer
  3. AnyRef
  4. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def baseTrain(classifier: C, labels: Seq[Int], features: Seq[la.Tensor1], weights: Seq[Double], evaluate: (C) ⇒ Unit): Unit

    Estimate the parameters of a classifier that has already been created.

    Estimate the parameters of a classifier that has already been created.

    Definition Classes
    BaseLinearTrainer
  2. abstract def newModel(featureSize: Int, labelSize: Int): C

    Definition Classes
    BaseLinearTrainer

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  17. final def simpleTrain(labelSize: Int, featureSize: Int, labels: Seq[Int], features: Seq[la.Tensor1], weights: Seq[Double], evaluate: (C) ⇒ Unit): C

    Create a Classifier and estimate its parameters.

    Create a Classifier and estimate its parameters.

    Definition Classes
    BaseLinearTrainer
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  19. def toString(): String

    Definition Classes
    AnyRef → Any
  20. def train[Label <: LabeledDiscreteVar](classifier: C, labels: Seq[Label], l2f: (Label) ⇒ VectorVar, l2w: (Label) ⇒ Double): Unit

  21. def train[Label <: LabeledDiscreteVar](classifier: C, labels: Seq[Label], l2f: (Label) ⇒ VectorVar, testLabels: Seq[Label], l2w: (Label) ⇒ Double = (l: Label) => 1.0): Unit

  22. def train(classifier: C, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], evaluate: (C) ⇒ Unit): Unit

  23. def train(classifier: C, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], evaluate: (C) ⇒ Unit): Unit

  24. def train(classifier: C, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar]): Unit

  25. def train(classifier: C, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double]): Unit

  26. def train(classifier: C, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): Unit

  27. def train(classifier: C, labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): Unit

  28. def train[Label <: LabeledDiscreteVar](labels: Seq[Label], l2f: (Label) ⇒ VectorVar, l2w: (Label) ⇒ Double): C

  29. def train[Label <: LabeledDiscreteVar](labels: Seq[Label], l2f: (Label) ⇒ VectorVar, testLabels: Seq[Label], l2w: (Label) ⇒ Double = (l: Label) => 1.0): C

  30. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], evaluate: (C) ⇒ Unit): C

  31. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], evaluate: (C) ⇒ Unit): C

  32. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar]): C

  33. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double]): C

  34. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): C

  35. def train(labels: Seq[LabeledDiscreteVar], features: Seq[VectorVar], weights: Seq[Double], testLabels: Seq[LabeledDiscreteVar], testFeatures: Seq[TensorVar]): C

  36. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from BaseLinearTrainer[la.Tensor1, la.Tensor1, Int, C]

Inherited from AnyRef

Inherited from Any

Ungrouped