cc.factorie.optimize

OptimizableObjectives

object OptimizableObjectives

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. OptimizableObjectives
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val absoluteUnivariate: AbsoluteUnivariate

    Absolute objective for univariate regression

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def epsilonInsensitiveAbsMultivariate(epsilon: Double): EpsilonInsensitiveAbsMultivariate

    Epsilon-insensitive absolute objective for multivariate regression

    Epsilon-insensitive absolute objective for multivariate regression

    epsilon

    The tolerance of the objective function

    returns

    An objective function

  10. def epsilonInsensitiveAbsUnivariate(epsilon: Double): EpsilonInsensitiveAbsUnivariate

    Epsilon-insensitive absolute objective for univariate regression

    Epsilon-insensitive absolute objective for univariate regression

    epsilon

    The tolerance of the objective function

    returns

    An objective function

  11. def epsilonInsensitiveSqMultivariate(epsilon: Double): EpsilonInsensitiveSqMultivariate

    Epsilon-insensitive squared objective for multivariate regression

    Epsilon-insensitive squared objective for multivariate regression

    epsilon

    The tolerance of the objective function

    returns

    An objective function

  12. def epsilonInsensitiveSqUnivariate(epsilon: Double): EpsilonInsensitiveSqUnivariate

    Epsilon-insensitive squared objective for univariate regression

    Epsilon-insensitive squared objective for univariate regression

    epsilon

    The tolerance of the objective function

    returns

    An objective function

  13. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  15. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  18. val hingeBinary: HingeBinary

    Hinge objective for binary classification

  19. val hingeMulticlass: HingeMulticlass

    Hinge objective for multiclass classification

  20. def hingeScaledBinary(posCost: Double = 1.0, negCost: Double = 1.0): HingeScaledBinary

    A variant of the hinge objective for binary classification which can have different costs for type 1 and type 2 errors.

    A variant of the hinge objective for binary classification which can have different costs for type 1 and type 2 errors.

    posCost

    The cost of predicting positive when the label is negative

    negCost

    The cost of predicting negative when the label is positive

    returns

    An objective function

  21. val hingeSqMulticlass: HingeSqMulticlass

    Squared hinge objective for multiclass classification

  22. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  23. val logBinary: LogBinary

    Log objective for binary classification

  24. val logMulticlass: LogMulticlass

    Log objective for multiclass classification.

    Log objective for multiclass classification. Inefficient.

  25. val logisticLinkFunction: (Double) ⇒ Double

    The logistic sigmoid function.

  26. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  29. def smoothHingeBinary(gamma: Double = 1.0, margin: Double = 1.0, posCost: Double = 1.0, negCost: Double = 1.0): SmoothHingeBinary

    A smoothed (Lipschitz gradient) variant of the hinge objective for binary classification which can have different costs for type 1 and type 2 errors and adjustable margin.

    A smoothed (Lipschitz gradient) variant of the hinge objective for binary classification which can have different costs for type 1 and type 2 errors and adjustable margin.

    gamma

    Adjusts how smoothly the hinge drops down to zero. Higher is more smooth, zero gives unsmoothed hinge.

    margin

    The number that you need to predict above to achieve the maximum objective score.

    posCost

    The cost of predicting positive when the label is negative.

    negCost

    The cost of predicting negative when the label is positive.

    returns

    An objective function

  30. val sparseLogMulticlass: SparseLogMulticlass

    Sparse Log objective for multiclass classification; very efficient.

  31. val squaredLossLinkFunction: (Double) ⇒ Double

  32. val squaredMultivariate: SquaredMultivariate

    Squared objective for multivariate regression

  33. val squaredUnivariate: SquaredUnivariate

    Squared objective for univariate regression

  34. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  35. def toString(): String

    Definition Classes
    AnyRef → Any
  36. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped