cc.factorie.app.topics.lda

LREval

class LREval extends AnyRef

Left-to-right evaluation algorithm described on page 65 in Wallach's PhD thesis.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LREval
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LREval(wSeqDomain: CategoricalSeqDomain[String], zDomain: variable.DiscreteDomain, alpha: Array[Double], alphaSum: Double, beta: Double, betaSum: Double, topicCounts: Array[Int], typeTopicCounts: Array[HashMap[Int, Int]])

    wSeqDomain

    word domain

    zDomain

    topic domain

    alpha

    an array storing the alpha parameters of the Dirichlet prior on the document-topic distributions

    alphaSum

    the sum of the alpha parameters, i.e., the concentration parameter of the Dirichlet distribution

    beta

    parameter of the Dirichlet prior on the topic-word distributions; same for every word type

    betaSum

    the sum of the beta parameters

    topicCounts

    an array storing the count for every topic

    typeTopicCounts

    for every word type this data structure stores the number of times the word appears in each topic; only topics with non-zero counts should be specified.

Type Members

  1. class Zs extends DiscreteSeqVariable

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val alpha: Array[Double]

    an array storing the alpha parameters of the Dirichlet prior on the document-topic distributions

  7. val alphaSum: Double

    the sum of the alpha parameters, i.

    the sum of the alpha parameters, i.e., the concentration parameter of the Dirichlet distribution

  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. val beta: Double

    parameter of the Dirichlet prior on the topic-word distributions; same for every word type

  10. val betaSum: Double

    the sum of the beta parameters

  11. def calcLR(testFile: String, numParticles: Int, useResampling: Boolean)(implicit random: Random): Double

    Sets up the test documents and computes the information rate

  12. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  13. def doCalc(testDocs: ArrayBuffer[Document], numParticles: Int, useResampling: Boolean)(implicit random: Random): Double

    Computes the information rate

  14. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  16. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  17. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  18. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  20. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  23. def numTopics: Int

  24. def sampleAtPosition(position: Int, doc: Doc, docTopicCounts: Array[Int], decrDocCounts: Boolean, decrTopicCounts: Boolean)(implicit random: Random): Unit

    Samples a topic a assignment for a given position in a document.

  25. def setUpDocs(testFile: String)(implicit random: Random): ArrayBuffer[Document]

    Creates documents from a file

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. val topicCounts: Array[Int]

    an array storing the count for every topic

  29. val typeTopicCounts: Array[HashMap[Int, Int]]

    for every word type this data structure stores the number of times the word appears in each topic; only topics with non-zero counts should be specified.

  30. val wSeqDomain: CategoricalSeqDomain[String]

    word domain

  31. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. val zDomain: variable.DiscreteDomain

    topic domain

  35. object zSeqDomain extends DiscreteSeqDomain

Inherited from AnyRef

Inherited from Any

Ungrouped