cc.factorie.app.classify

SVMLinearVectorClassifierTrainer

class SVMLinearVectorClassifierTrainer extends OptimizingLinearVectorClassifierTrainer

An OptimizingLinearVectorClassifierTrainer pre-tuned with default arguments well-suited to training an L2-regularized linear SVM.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SVMLinearVectorClassifierTrainer
  2. OptimizingLinearVectorClassifierTrainer
  3. LinearVectorClassifierTrainer
  4. VectorClassifierTrainer
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SVMLinearVectorClassifierTrainer(nThreads: Int = 1, l2: Double = 0.1)(implicit random: Random)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. val baseTrainer: SVMMulticlassTrainer

  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def defaultTestDiagnostic[C <: LinearVectorClassifier[L, F], L <: LabeledDiscreteVar, F <: VectorVar](classifier: LinearVectorClassifier[L, F], trainLabels: Iterable[L], testLabels: Iterable[L]): (C) ⇒ Unit

    Return a function suitable for passing in as the diagnostic to train which prints the accuracy on the testLabels

    Return a function suitable for passing in as the diagnostic to train which prints the accuracy on the testLabels

    Definition Classes
    OptimizingLinearVectorClassifierTrainer
  10. def defaultTrainAndTestDiagnostic[C <: LinearVectorClassifier[L, F], L <: LabeledDiscreteVar, F <: VectorVar](classifier: LinearVectorClassifier[L, F], trainLabels: Iterable[L], testLabels: Iterable[L]): (C) ⇒ Unit

    Return a function suitable for passing in as the diagnostic to train which prints the accuracy on the trainLabels and the testLabels

    Return a function suitable for passing in as the diagnostic to train which prints the accuracy on the trainLabels and the testLabels

    Definition Classes
    OptimizingLinearVectorClassifierTrainer
  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. def examples[L <: LabeledDiscreteVar, F <: VectorVar](classifier: LinearVectorClassifier[L, F], labels: Iterable[L], l2f: (L) ⇒ F, objective: Multiclass): Seq[optimize.Example]

    Create a sequence of Example instances for obtaining the gradients used for training.

    Create a sequence of Example instances for obtaining the gradients used for training.

    Definition Classes
    OptimizingLinearVectorClassifierTrainer
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  16. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  17. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  18. val maxIterations: Int

  19. val miniBatch: Int

  20. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  21. def newClassifier[L <: LabeledDiscreteVar, F <: VectorVar](labelDomainSize: Int, featureDomainSize: Int, l2f: (L) ⇒ F): LinearVectorClassifier[L, F]

    Create a new LinearVectorClassifier, not yet trained.

    Create a new LinearVectorClassifier, not yet trained.

    Attributes
    protected
    Definition Classes
    LinearVectorClassifierTrainer
  22. final def notify(): Unit

    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  24. val objective: Multiclass

  25. val optimizer: GradientOptimizer

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. def train[C <: LinearVectorClassifier[L, F], L <: LabeledDiscreteVar, F <: VectorVar](classifier: C, trainLabels: Iterable[L], l2f: (L) ⇒ F, diagnostic: (C) ⇒ Unit): C

    Train the classifier to convergence, calling the diagnostic function once after each iteration.

    Train the classifier to convergence, calling the diagnostic function once after each iteration. This is the base method called by the other simpler train methods.

    Definition Classes
    SVMLinearVectorClassifierTrainerOptimizingLinearVectorClassifierTrainer
  29. def train[C <: LinearVectorClassifier[L, F], L <: LabeledDiscreteVar, F <: VectorVar](classifier: C, trainLabels: Iterable[L], l2f: (L) ⇒ F): C

    Train the classifier to convergence, calling no diagnostic function.

    Train the classifier to convergence, calling no diagnostic function.

    Definition Classes
    OptimizingLinearVectorClassifierTrainerLinearVectorClassifierTrainer
  30. def train[C <: LinearVectorClassifier[L, F], L <: LabeledDiscreteVar, F <: VectorVar](classifier: C, trainLabels: Iterable[L], testLabels: Iterable[L], l2f: (L) ⇒ F): C

    Train the classifier to convergence, calling a test-accuracy-printing diagnostic function once after each iteration.

    Train the classifier to convergence, calling a test-accuracy-printing diagnostic function once after each iteration.

    Definition Classes
    OptimizingLinearVectorClassifierTrainer
  31. def train[L <: LabeledDiscreteVar, F <: VectorVar](labels: Iterable[L], l2f: (L) ⇒ F): LinearVectorClassifier[L, F]

    Create, train and return a new LinearVectorClassifier

    Create, train and return a new LinearVectorClassifier

    Definition Classes
    LinearVectorClassifierTrainerVectorClassifierTrainer
  32. val useOnlineTrainer: Boolean

  33. val useParallelTrainer: Boolean

  34. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from VectorClassifierTrainer

Inherited from AnyRef

Inherited from Any

Ungrouped