object
ForwardBackwardPOS
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
-
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
lazy val
defaultCategory: String
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
def
initPosFeatures(document: Document): Unit
-
def
initPosFeatures(documents: Seq[Document]): Unit
-
final
def
isInstanceOf[T0]: Boolean
-
-
def
load(modelFile: String): Unit
-
def
main(args: Array[String]): Unit
-
var
modelLoaded: Boolean
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
def
percentageSetToTarget[L <: LabeledVar](ls: Seq[L]): Double
-
def
predictSentence(vs: Seq[LabeledPennPosTag], oldBp: Boolean = false): Unit
-
def
predictSentence(s: Sentence): Unit
-
def
process(document: Document): Unit
-
def
process(documents: Seq[Document]): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
test(documents: Seq[Document], label: String = "test"): Unit
-
def
toString(): String
-
def
train(documents: Seq[Document], devDocuments: Seq[Document], testDocuments: Seq[Document] = Seq.empty[Document], iterations: Int = 100, modelFile: String = "", extraId: String = "")(implicit random: Random): Unit
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
A simple demonstration of part-of-speech tagging with a finite-state linear-chain CRF. The set of features is impoverished in this demonstration, so the accuracy is not high