cc.factorie.optimize

LBFGS

class LBFGS extends GradientOptimizer with FastLogging

Maximize using Limited-memory BFGS, as described in Byrd, Nocedal, and Schnabel, "Representations of Quasi-Newton Matrices and Their Use in Limited Memory Methods"

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LBFGS
  2. FastLogging
  3. Logging
  4. GradientOptimizer
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LBFGS(numIterations: Double = 1000, maxIterations: Int = 1000, tolerance: Double = 1.0E-4, gradientTolerance: Double = 0.001, eps: Double = 1.0E-5, rankOfApproximation: Int = 4, initialStepSize: Double = 1.0)

Type Members

  1. case class StepTooSmallException(msg: String) extends Exception with Product with Serializable

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. var alpha: Array[Double]

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. var direction: WeightsMap

  10. val eps: Double

  11. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. def finalizeWeights(weights: WeightsSet): Unit

    Once learning is done, the weights should be copied back into normal tensors.

    Once learning is done, the weights should be copied back into normal tensors.

    weights

    The weights

    Definition Classes
    LBFGSGradientOptimizer
  15. var g: WeightsMap

  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. var gradientTolerance: Double

  18. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  19. val initialStepSize: Double

  20. def initializeWeights(weights: WeightsSet): Unit

    Some optimizers swap out weights with special purpose tensors for e.

    Some optimizers swap out weights with special purpose tensors for e.g. efficient scoring while learning.

    weights

    The weights

    Definition Classes
    LBFGSGradientOptimizer
  21. def isConverged: Boolean

    Whether the optimizer has converged yet.

    Whether the optimizer has converged yet.

    Definition Classes
    LBFGSGradientOptimizer
  22. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  23. var iterations: Int

  24. var lineMaximizer: BackTrackLineOptimizer

  25. val logger: Logger

    Definition Classes
    FastLoggingLogging
  26. var maxIterations: Int

  27. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  28. final def notify(): Unit

    Definition Classes
    AnyRef
  29. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  30. var numIterations: Double

  31. var oldParams: WeightsMap

  32. var oldValue: Double

  33. var oldg: WeightsMap

  34. var params: WeightsSet

  35. def postIteration(iter: Int): Unit

  36. def pushDbl(l: ArrayBuffer[Double], toadd: Double): Unit

  37. def pushTensor(l: ArrayBuffer[WeightsMap], toadd: WeightsMap): Unit

  38. val rankOfApproximation: Int

  39. def reset(): Unit

    Reset the optimizers internal state (such as Hessian approximation, etc.

    Reset the optimizers internal state (such as Hessian approximation, etc.)

    Definition Classes
    LBFGSGradientOptimizer
  40. var rho: ArrayBuffer[Double]

  41. var s: ArrayBuffer[WeightsMap]

  42. def step(weights: WeightsSet, gradient: WeightsMap, value: Double): Unit

    Updates the weights according to the gradient.

    Updates the weights according to the gradient.

    weights

    The weights

    gradient

    The gradient

    value

    The value

    Definition Classes
    LBFGSGradientOptimizer
  43. var step: Double

  44. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  45. def toString(): String

    Definition Classes
    AnyRef → Any
  46. var tolerance: Double

  47. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  49. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  50. var y: ArrayBuffer[WeightsMap]

Inherited from FastLogging

Inherited from Logging

Inherited from GradientOptimizer

Inherited from AnyRef

Inherited from Any

Ungrouped