class
WeightsMap extends TensorSet
Instance Constructors
-
new
WeightsMap(defaultTensor: (Weights) ⇒ Tensor)
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
def
*=(other: Double): Unit
-
-
def
+=(w: TensorSet, f: Double): Unit
-
-
def
:=(other: TensorSet): Unit
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
-
final
def
asInstanceOf[T0]: T0
-
def
clear(): Unit
-
def
clone(): AnyRef
-
def
containsNaN(): Boolean
-
def
containts(key: Weights): Boolean
-
-
def
different(w: TensorSet, tolerance: Double): Boolean
-
def
dot(w: TensorSet): Double
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
final
def
isInstanceOf[T0]: Boolean
-
-
def
length: Int
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
def
oneNorm: Double
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
-
def
toArray: Array[Double]
-
-
def
toString(): String
-
def
twoNorm: Double
-
def
twoNormSquared: Double
-
def
update(key: Weights, value: Tensor): Unit
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
-
def
zero(): Unit
A TensorSet in which the Tensors are not stored in the Weights objects, but in a map inside this object. This is used to store gradients and expectations---tensors that have the same structure as the WeightsSet, but are not the parameter values themselves.