class
SparseOnlineLDA extends AnyRef
Instance Constructors
-
new
SparseOnlineLDA(wordDomain: CategoricalDomain[String], numDocs: Int, numTopics: Int = 10, alpha: Double = 0.1, beta: Double = 0.1, batchSize: Int = 100, numSamples: Int = 5, burninSamples: Int = 2, initLearningRate: Double = 100.0, kappa: Double = 0.6, maxIterations: Int = 2000, printTopicInterval: Int = 10, topicsFileName: String = "lda.topics")(implicit random: Random)
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
val
Ndk: Array[Int]
-
val
Nk: Array[Double]
-
val
alpha: Double
-
def
approximateExpDigamma(x: Double): Double
-
final
def
asInstanceOf[T0]: T0
-
val
batchSize: Int
-
val
beta: Double
-
val
betaSum: Double
-
-
val
burninSamples: Int
-
def
clone(): AnyRef
-
var
currChanges: Int
-
var
currSamples: Int
-
var
docsProcessed: Int
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
val
expDiGammaBeta: Double
-
def
export(): Unit
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
val
infoMsg: String
-
val
initLearningRate: Double
-
final
def
isInstanceOf[T0]: Boolean
-
val
kappa: Double
-
val
maxIterations: Int
-
var
maxTokens: Int
-
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
val
numDocs: Int
-
val
numSamples: Int
-
val
numTopics: Int
-
val
numTypes: Int
-
-
val
printTopicInterval: Int
-
implicit
val
random: Random
-
def
rescale(scale: Double): Unit
-
val
samplingWeights: Array[Double]
-
var
scale: Double
-
val
skipIterations: Int
-
def
sortAndPrune(cutoff: Double): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
val
topicCoefficients: Array[Double]
-
val
topicNormalizers: Array[Double]
-
def
topicSummary(topicIndex: Int, numWords: Int = 10): String
-
def
topicWords(topicIndex: Int, numWords: Int = 10): Seq[String]
-
def
topicWordsArray(topicIndex: Int, numWords: Int): Array[String]
-
val
topicsFileName: String
-
def
topicsSummary(numWords: Int = 10): String
-
-
def
train(batchDocs: Array[CategoricalSeqVariable[String]], iteration: Int): Unit
-
-
val
typeTopics: Array[Array[Int]]
-
val
typeWeights: Array[Array[Double]]
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
-
-
var
wordGradientLimit: Int
-
var
wordGradientQueueTopics: Array[Int]
-
var
wordGradientQueueTypes: Array[Int]
-
var
wordGradientSize: Int
-
val
wordWeightConstant: Int
-
var
zs: Array[Int]