cc.factorie.app.nlp.coref

ImplicitFeatureConjunctionTensor

class ImplicitFeatureConjunctionTensor extends la.Tensor1 with ReadOnlyTensor with SparseDoubleSeq

HashConjunctionFeatureTensor is a tensor which implicitly represents all conjunctions of features in its baseFeatures member. It never instantiates all the conjunctions in memory, and it uses hashing for efficiency.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ImplicitFeatureConjunctionTensor
  2. SparseDoubleSeq
  3. ReadOnlyTensor
  4. Tensor1
  5. Tensor
  6. Serializable
  7. Serializable
  8. MutableDoubleSeq
  9. IncrementableDoubleSeq
  10. DoubleSeq
  11. AnyRef
  12. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ImplicitFeatureConjunctionTensor(dim1: Int, baseFeatures: SparseBinaryTensor, domain: ImplicitDomain)

    dim1

    - the size of the hash domain for the conjunction features

    baseFeatures

    - the sparse binary tensor from which conjunctions are being computed

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. def *(t: la.Tensor2): la.Tensor1

    Definition Classes
    Tensor1
  5. def *(f: Double): la.Tensor1

    Definition Classes
    Tensor1Tensor
  6. def *=(ds: DoubleSeq): Unit

    Definition Classes
    MutableDoubleSeq
  7. def *=(d: Double): Unit

    Definition Classes
    MutableDoubleSeq
  8. def *=(i: Int, incr: Double): Unit

    Definition Classes
    MutableDoubleSeq
  9. def +(t: la.Tensor1): la.Tensor1

    Definition Classes
    Tensor1
  10. def +(that: Tensor): Tensor

    Definition Classes
    Tensor
  11. def ++=(tensors: Iterable[Tensor]): ImplicitFeatureConjunctionTensor.this.type

    Definition Classes
    Tensor
  12. def +=(i: Int, incr: Double): Unit

  13. def +=(ds: DoubleSeq, factor: DoubleSeq): Unit

    Increment by the element-wise product of ds and factor.

    Increment by the element-wise product of ds and factor.

    Definition Classes
    IncrementableDoubleSeq
  14. def +=(a: Array[Double], factor: Double): Unit

    Definition Classes
    IncrementableDoubleSeq
  15. def +=(ds: DoubleSeq, factor: Double): Unit

    Definition Classes
    IncrementableDoubleSeq
  16. def +=(a: Array[Double]): Unit

    Definition Classes
    IncrementableDoubleSeq
  17. final def +=(ds: DoubleSeq): Unit

    Definition Classes
    IncrementableDoubleSeq
  18. def +=(d: Double): Unit

    Definition Classes
    IncrementableDoubleSeq
  19. def -(t: la.Tensor1): la.Tensor1

    Definition Classes
    Tensor1
  20. def -(that: Tensor): Tensor

    Definition Classes
    Tensor
  21. def -=(ds: DoubleSeq): Unit

    Definition Classes
    IncrementableDoubleSeq
  22. final def -=(d: Double): Unit

    Definition Classes
    IncrementableDoubleSeq
  23. def -=(i: Int, incr: Double): Unit

    Definition Classes
    IncrementableDoubleSeq
  24. def /(f: Double): la.Tensor1

    Definition Classes
    Tensor1Tensor
  25. def /=(ds: DoubleSeq): Unit

    Definition Classes
    MutableDoubleSeq
  26. final def /=(d: Double): Unit

    Definition Classes
    MutableDoubleSeq
  27. final def /=(i: Int, incr: Double): Unit

    Definition Classes
    MutableDoubleSeq
  28. def :=(a: Array[Double], offset: Int): Unit

    Definition Classes
    MutableDoubleSeq
  29. def :=(a: Array[Double]): Unit

    Definition Classes
    MutableDoubleSeq
  30. def :=(ds: DoubleSeq): Unit

    Definition Classes
    MutableDoubleSeq
  31. def :=(d: Double): Unit

    Definition Classes
    MutableDoubleSeq
  32. def =+(a: Array[Double], offset: Int, f: Double): Unit

    Increment given array (starting at offset index) with contents of this DoubleSeq, multiplied by factor f.

    Increment given array (starting at offset index) with contents of this DoubleSeq, multiplied by factor f.

    Definition Classes
    SparseDoubleSeqDoubleSeq
  33. final def =+(a: Array[Double], f: Double): Unit

    Definition Classes
    DoubleSeq
  34. final def =+(a: Array[Double], offset: Int): Unit

    Definition Classes
    DoubleSeq
  35. final def =+(a: Array[Double]): Unit

    Definition Classes
    DoubleSeq
  36. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  37. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  38. def abs(): Unit

    Definition Classes
    MutableDoubleSeq
  39. def activeDomain: Nothing

  40. def activeDomain1: IntSeq

    Definition Classes
    Tensor1
  41. def activeDomainSize: Int

  42. def activeDomains: Array[IntSeq]

    Definition Classes
    Tensor1Tensor
  43. def activeElements: Iterator[(Int, Double)]

    Definition Classes
    Tensor
  44. def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder

    Append a string representation of this DoubleSeq to the StringBuilder.

    Append a string representation of this DoubleSeq to the StringBuilder.

    Definition Classes
    DoubleSeq
  45. def apply(i: Int): Nothing

  46. def asArray: Array[Double]

    Return the values as an Array[Double].

    Return the values as an Array[Double]. Not guaranteed to be a copy; in fact if it is possible to return a pointer to an internal array, it will simply return this.

    Definition Classes
    DoubleSeq
  47. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  48. def asSeq: Seq[Double]

    With uncopied contents

    With uncopied contents

    Definition Classes
    DoubleSeq
  49. val baseFeatures: SparseBinaryTensor

    - the sparse binary tensor from which conjunctions are being computed

  50. def blankCopy: la.Tensor1

    Definition Classes
    Tensor1Tensor
  51. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  52. def contains(d: Double): Boolean

    Definition Classes
    SparseDoubleSeqDoubleSeq
  53. def containsNaN: Boolean

    Definition Classes
    SparseDoubleSeqDoubleSeq
  54. def copy: la.Tensor1

    Definition Classes
    Tensor1Tensor
  55. def cosineSimilarity(t: DoubleSeq): Double

    Definition Classes
    Tensor
  56. def defaultValue: Double

    The default value at indices not covered by activeDomain.

    The default value at indices not covered by activeDomain. Subclasses may override this

    Definition Classes
    Tensor
  57. def different(t: DoubleSeq, threshold: Double): Boolean

    Definition Classes
    SparseDoubleSeqDoubleSeq
  58. val dim1: Int

    - the size of the hash domain for the conjunction features

    - the size of the hash domain for the conjunction features

    Definition Classes
    ImplicitFeatureConjunctionTensorTensor1
  59. def dimensions: Array[Int]

    Definition Classes
    Tensor1Tensor
  60. def dimensionsMatch(t: Tensor): Boolean

    Definition Classes
    Tensor1Tensor
  61. def dot(ds: DoubleSeq): Double

  62. def ensureDimensionsMatch(t: Tensor): Unit

    Definition Classes
    Tensor1Tensor
  63. def entropy: Double

    Assumes that the values are already normalized to sum to 1.

    Assumes that the values are already normalized to sum to 1.

    Definition Classes
    SparseDoubleSeqDoubleSeq
  64. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  65. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  66. def exists(f: (Double) ⇒ Boolean): Boolean

    Definition Classes
    Tensor
  67. def expNormalize(logZ: Double): Unit

    Exponential the elements of the array such that they are normalized to sum to one, but do so efficiently by providing logZ.

    Exponential the elements of the array such that they are normalized to sum to one, but do so efficiently by providing logZ. Note that to maximize efficiency, this method does not verify that the logZ value was the correct one to cause proper normalization.

    Definition Classes
    MutableDoubleSeq
  68. def expNormalize(): Double

    Exponentiate the elements of the array, and then normalize them to sum to one.

    Exponentiate the elements of the array, and then normalize them to sum to one.

    Definition Classes
    MutableDoubleSeq
  69. def expNormalized: Tensor

    Definition Classes
    Tensor
  70. def exponentiate(): Unit

    Definition Classes
    MutableDoubleSeq
  71. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  72. def foldActiveElements(seed: Double, f: (Int, Double, Double) ⇒ Double): Double

    Definition Classes
    Tensor
  73. def foldLeft[B](z: B)(f: (B, Double) ⇒ B): B

    Definition Classes
    DoubleSeq
  74. def forall(f: (Double) ⇒ Boolean): Boolean

    Definition Classes
    DoubleSeq
  75. def forallActiveElements(f: (Int, Double) ⇒ Boolean): Boolean

    Definition Classes
    SparseDoubleSeq
  76. def forallElements(f: (Int, Double) ⇒ Boolean): Boolean

    Definition Classes
    DoubleSeq
  77. def foreach(f: (Double) ⇒ Unit): Unit

    Definition Classes
    DoubleSeq
  78. def foreachActiveElement(f: (Int, Double) ⇒ Unit): Unit

    Note: this foreachActiveElement might call the same index twice.

    Note: this foreachActiveElement might call the same index twice.

    Definition Classes
    ImplicitFeatureConjunctionTensorDoubleSeq
  79. def foreachElement(f: (Int, Double) ⇒ Unit): Unit

    Definition Classes
    DoubleSeq
  80. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  81. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  82. def indexOf(d: Double): Int

    Definition Classes
    SparseDoubleSeqDoubleSeq
  83. def infinityNorm: Double

    Definition Classes
    SparseDoubleSeqDoubleSeq
  84. def isDense: Boolean

  85. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  86. def isUniform: Boolean

    Definition Classes
    Tensor
  87. def jsDivergence(p: DoubleSeq): Double

    Assumes that the values are already normalized to sum to 1.

    Assumes that the values are already normalized to sum to 1.

    Definition Classes
    SparseDoubleSeqDoubleSeq
  88. def klDivergence(p: DoubleSeq): Double

    Assumes that the values in both DoubleSeq are already normalized to sum to 1.

    Assumes that the values in both DoubleSeq are already normalized to sum to 1.

    Definition Classes
    SparseDoubleSeqDoubleSeq
  89. def l2Similarity(t: DoubleSeq): Double

    Definition Classes
    DoubleSeq
  90. final def length: Int

    Definition Classes
    Tensor1DoubleSeq
    Annotations
    @inline()
  91. def map(f: (Double) ⇒ Double): DoubleSeq

    Definition Classes
    DoubleSeq
  92. def max: Double

    Definition Classes
    SparseDoubleSeqDoubleSeq
  93. def maxIndex: Int

    Definition Classes
    SparseDoubleSeqDoubleSeq
  94. def maxIndex2: (Int, Int)

    Definition Classes
    SparseDoubleSeqDoubleSeq
  95. def maxNormalize(): Unit

    Definition Classes
    MutableDoubleSeq
  96. def min: Double

    Definition Classes
    SparseDoubleSeqDoubleSeq
  97. def mkString: String

    Definition Classes
    DoubleSeq
  98. def mkString(sep: String): String

    Definition Classes
    DoubleSeq
  99. def mkString(start: String, sep: String, end: String): String

    Definition Classes
    DoubleSeq
  100. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  101. def normalize(): Double

    Definition Classes
    MutableDoubleSeq
  102. def normalizeLogProb(): Double

    expNormalize, then put back into log-space.

    expNormalize, then put back into log-space.

    Definition Classes
    MutableDoubleSeq
  103. def normalized: Tensor

    Definition Classes
    Tensor
  104. final def notify(): Unit

    Definition Classes
    AnyRef
  105. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  106. def numDimensions: Int

    Definition Classes
    Tensor1Tensor
  107. def oneNorm: Double

    Definition Classes
    SparseDoubleSeqDoubleSeq
  108. def oneNormalize(): Double

    Definition Classes
    MutableDoubleSeq
  109. def outer(t: Tensor): Tensor

    Definition Classes
    Tensor
  110. def printLength: Int

    Definition Classes
    Tensor
  111. def reshape(dim: Array[Int]): Tensor

    Definition Classes
    Tensor1
  112. def sampleIndex(normalizer: Double)(implicit r: Random): Int

    Definition Classes
    SparseDoubleSeqDoubleSeq
  113. def sampleIndex(implicit r: Random): Int

    Careful, for many subclasses this is inefficient because it calls the method "sum" to get the normalizer.

    Careful, for many subclasses this is inefficient because it calls the method "sum" to get the normalizer.

    Definition Classes
    DoubleSeq
  114. final def size: Int

    Definition Classes
    DoubleSeq
  115. def stringPrefix: String

    Definition Classes
    Tensor1Tensor
  116. def substitute(oldValue: Double, newValue: Double): Unit

    Definition Classes
    MutableDoubleSeq
  117. def sum: Double

    Definition Classes
    SparseDoubleSeqDoubleSeq
  118. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  119. def toArray: Array[Double]

    Return the values as an Array[Double].

    Return the values as an Array[Double]. Guaranteed to be a copy, not just a pointer to an internal array that would change with changes to the DoubleSeq

    Definition Classes
    SparseDoubleSeqDoubleSeq
  120. def toSeq: Seq[Double]

    With copied contents

    With copied contents

    Definition Classes
    DoubleSeq
  121. def toString(): String

    Definition Classes
    Tensor → AnyRef → Any
  122. def top(n: Int): TopN[String]

    Return records for the n elements with the largest values.

    Return records for the n elements with the largest values.

    Definition Classes
    DoubleSeq
  123. final def twoNorm: Double

    Definition Classes
    DoubleSeq
  124. def twoNormSquared: Double

    Definition Classes
    SparseDoubleSeqDoubleSeq
  125. def twoNormalize(): Double

    Definition Classes
    MutableDoubleSeq
  126. def twoSquaredNormalize(): Double

    Definition Classes
    MutableDoubleSeq
  127. def update(i: Int, v: Double): Unit

    Definition Classes
    ReadOnlyTensorTensorMutableDoubleSeq
  128. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  129. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  130. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  131. def zero(): Unit

Inherited from SparseDoubleSeq

Inherited from ReadOnlyTensor

Inherited from la.Tensor1

Inherited from Tensor

Inherited from Serializable

Inherited from Serializable

Inherited from MutableDoubleSeq

Inherited from IncrementableDoubleSeq

Inherited from DoubleSeq

Inherited from AnyRef

Inherited from Any

Ungrouped