Instance Constructors
-
new
PerLabelLogOdds(labels: Iterable[L], labelToFeatures: (L) ⇒ F)
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
def
init(labels: Iterable[L]): Unit
-
-
final
def
isInstanceOf[T0]: Boolean
-
-
var
labelEntropies: Array[Double]
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
def
top(labelValue: DiscreteValue, n: Int): TopN[String]
-
def
top(labelIndex: Int, n: Int): TopN[String]
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Calculate the weighted log-odds ratio: p(w|c) * log(p(w|c)/p(w|!c)) for each word w and label c. Ranks highly those words that substantially contribute to positively predicting label c.
0.10