class
TwoStageTrainer extends AnyRef
Instance Constructors
-
new
TwoStageTrainer(firstTrainer: Trainer, secondTrainer: Trainer)
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
def
isConverged: Boolean
-
final
def
isInstanceOf[T0]: Boolean
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
def
processExamples(examples: Iterable[Example]): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Train using one trainer, until it has converged, and then use the second trainer instead. Typical use is to first train with an online stochastic gradient ascent such as OnlineTrainer and AdaGrad, and then a batch trainer, like BatchTrainer and LBFGS.