Instance Constructors
-
new
SemiSupervisedLikelihoodExample(labels: A, model: B, inferConstrained: Infer[A, B], inferUnconstrained: Infer[A, B])
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
final
def
isInstanceOf[T0]: Boolean
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Maximum likelihood in one semi supervised setting. It does constrained inference and maximizes the likelihood of it when compared with unconstrained inference. This can implement Generalized Expectation and other algorithms.
The type of the labels
The type of the model