cc.factorie.optimize

OnlineTrainer

class OnlineTrainer extends Trainer with FastLogging

Learns the parameters of a model by computing the gradient and calling the optimizer one example at a time.

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. OnlineTrainer
  2. FastLogging
  3. Logging
  4. Trainer
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OnlineTrainer(weightsSet: WeightsSet, optimizer: GradientOptimizer = ..., maxIterations: Int = 3, logEveryN: Int = -1)

    weightsSet

    The parameters to be optimized

    optimizer

    The optimizer

    maxIterations

    The maximum number of iterations until reporting convergence

    logEveryN

    After this many examples a log will be printed. If set to -1 10 logs will be printed.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. def isConverged: Boolean

    Would more training help?

    Would more training help?

    Definition Classes
    OnlineTrainerTrainer
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. var iteration: Int

  16. var logEveryN: Int

    After this many examples a log will be printed.

    After this many examples a log will be printed. If set to -1 10 logs will be printed.

  17. val logger: Logger

    Definition Classes
    FastLoggingLogging
  18. val maxIterations: Int

    The maximum number of iterations until reporting convergence

  19. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  22. val optimizer: GradientOptimizer

    The optimizer

  23. def processExamples(examples: Iterable[Example]): Unit

    Process the examples once.

    Process the examples once.

    examples

    Examples to be processed

    Definition Classes
    OnlineTrainerTrainer
  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  25. def toString(): String

    Definition Classes
    AnyRef → Any
  26. def trainFromExamples(examples: Iterable[Example]): Unit

    Repeatedly process the examples until training has converged.

    Repeatedly process the examples until training has converged.

    Definition Classes
    Trainer
  27. val valueAccumulator: LocalDoubleAccumulator

  28. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. val weightsSet: WeightsSet

    The parameters to be optimized

Inherited from FastLogging

Inherited from Logging

Inherited from Trainer

Inherited from AnyRef

Inherited from Any

Ungrouped