cc.factorie.optimize

BatchTrainer

class BatchTrainer extends Trainer with FastLogging

Learns the parameters of a Model by summing the gradients and values of all Examples, and passing them to a GradientOptimizer (such as ConjugateGradient or LBFGS).

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. BatchTrainer
  2. FastLogging
  3. Logging
  4. Trainer
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BatchTrainer(weightsSet: WeightsSet, optimizer: GradientOptimizer = ...)

    weightsSet

    The parameters to be optimized

    optimizer

    The optimizer

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. val gradientAccumulator: LocalWeightsMapAccumulator

  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. def isConverged: Boolean

    Would more training help?

    Would more training help?

    Definition Classes
    BatchTrainerTrainer
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. val logger: Logger

    Definition Classes
    FastLoggingLogging
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. val optimizer: GradientOptimizer

    The optimizer

  21. def processExamples(examples: Iterable[Example]): Unit

    Process the examples once.

    Process the examples once.

    examples

    Examples to be processed

    Definition Classes
    BatchTrainerTrainer
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  23. def toString(): String

    Definition Classes
    AnyRef → Any
  24. def trainFromExamples(examples: Iterable[Example]): Unit

    Repeatedly process the examples until training has converged.

    Repeatedly process the examples until training has converged.

    Definition Classes
    Trainer
  25. val valueAccumulator: LocalDoubleAccumulator

  26. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. val weightsSet: WeightsSet

    The parameters to be optimized

Inherited from FastLogging

Inherited from Logging

Inherited from Trainer

Inherited from AnyRef

Inherited from Any

Ungrouped