Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
def
eStep(): Unit
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
final
def
isInstanceOf[T0]: Boolean
-
def
mStep(): Unit
-
val
marginalizing: Iterable[W]
-
-
val
maximizing: Iterable[V]
-
val
model: M
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
def
process(): Unit
-
def
process(iterations: Int): Unit
-
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
The expectation-maximization method of inference. maximizing is the collection of variables that will be maximized. meanField contains the variables for which to get expectations. You can provide your own Maximizer; other wise an instance of the default MaximizeSuite is provided.